133 research outputs found

    Lopsidedness of self-consistent galaxies by the external field effect of clusters

    Full text link
    Adopting Schwarzschild's orbit-superposition technique, we construct a series of self-consistent galaxy models, embedded in the external field of galaxy clusters in the framework of Milgrom's MOdified Newtonian Dynamics. These models represent relatively massive ellipticals with a Hernquist radial profile at various distances from the cluster centre. Using NN-body simulations, we perform a first analysis of these models and their evolution. We find that self-gravitating axisymmetric density models, even under a weak external field, lose their symmetry by instability and generally evolve to triaxial configurations. A kinematic analysis suggests that the instability originates from both box and non-classified orbits with low angular momentum. We also consider a self-consistent isolated system which is then placed in a strong external field and allowed to evolve freely. This model, just as the corresponding equilibrium model in the same external field, eventually settles to a triaxial equilibrium as well, but has a higher velocity radial anisotropy and is rounder. The presence of an external field in MOND universe generically predicts some lopsidedness of galaxy shapes.Comment: 24 pages, 20 figures. Accepted for publication in Ap

    Distribution of satellite galaxies in high redshift groups

    Full text link
    We use galaxy groups at redshifts between 0.4 and 1.0 selected from the Great Observatories Origins Deep Survey (GOODS) to study the color-morphological properties of satellite galaxies, and investigate possible alignment between the distribution of the satellites and the orientation of their central galaxy. We confirm the bimodal color and morphological type distribution for satellite galaxies at this redshift range: the red and blue classes corresponds to the early and late morphological types respectively, and the early-type satellites are on average brighter than the late-type ones. Furthermore, there is a {\it morphological conformity} between the central and satellite galaxies: the fraction of early-type satellites in groups with an early-type central is higher than those with a late-type central galaxy. This effect is stronger at smaller separations from the central galaxy. We find a marginally significant signal of alignment between the major axis of the early-type central galaxy and its satellite system, while for the late-type centrals no significant alignment signal is found. We discuss the alignment signal in the context of shape evolution of groups.Comment: 7 pages, 7 figures, accepted by Ap

    Torus Models of the Outer Disc of the Milky Way using LAMOST Survey Data

    Full text link
    With a sample of 48,161 K giant stars selected from the LAMOST DR 2 catalogue, we construct torus models in a large volume extending, for the first time, from the solar vicinity to a Galactocentric distance of 20\sim 20 kpc, reaching the outskirts of the Galactic disc. We show that the kinematics of the K giant stars match conventional models, e.g. as created by Binney in 2012, in the Solar vicinity. However such two-disc models fail if they are extended to the outer regions, even if an additional disc component is utilised. If we loosen constraints in the Sun's vicinity, we find that an effective thick disc model could explain the anti-centre of the MW. The LAMOST data imply that the sizes of the Galactic discs are much larger, and that the outer disc is much thicker, than previously thought, or alternatively that the outer structure is not a conventional disc at all. However, the velocity dispersion σ0z\sigma_{0z} of the kinematically thick disc in the best-fitting model is about 80 km s1^{-1} and has a scale parameter RσR_{\sigma} for an exponential distribution function of 19\sim 19 kpc. Such a height σ0z\sigma_{0z} is strongly rejected by current measurements in the solar neighbourhood, and thus a model beyond quasi-thermal, two or three thin or thick discs is required.Comment: 11 pages, 7 figures and 3 tables, Accepted for publication in MNRA

    BSG alignment of SDSS galaxy groups

    Full text link
    We study the alignment signal between the distribution of brightest satellite galaxies (BSGs) and the major axis of their host groups using SDSS group catalog constructed by Yang et al. (2007). After correcting for the effect of group ellipticity, a statistically significant (~ 5\sigma) major-axis alignment is detected and the alignment angle is found to be 43.0 \pm 0.4 degrees. More massive and richer groups show stronger BSG alignment. The BSG alignment around blue BCGs is slightly stronger than that around red BCGs. And red BSGs have much stronger major-axis alignment than blue BSGs. Unlike BSGs, other satellites do not show very significant alignment with group major axis. We further explore the BSG alignment in semi-analytic model (SAM) constructed by Guo et al. (2011). We found general good agreement with observations: BSGs in SAM show strong major-axis alignment which depends on group mass and richness in the same way as observations; and none of other satellites exhibit prominent alignment. However, discrepancy also exists in that the SAM shows opposite BSG color dependence, which is most probably induced by the missing of large scale environment ingredient in SAM. The combination of two popular scenarios can explain the detected BSG alignment. The first one: satellites merged into the group preferentially along the surrounding filaments, which is strongly aligned with the major axis of the group. The second one: BSGs enter their host group more recently than other satellites, then will preserve more information about the assembling history and so the major-axis alignment. In SAM, we found positive evidence for the second scenario by the fact that BSGs merged into groups statistically more recently than other satellites. On the other hand, although is opposite in SAM, the BSG color dependence in observation might indicate the first scenario as well.Comment: 8 pages, 11 figures, ApJ accepte

    bifurcation analysis of a delayed worm propagation model with saturated incidence

    Get PDF
    This paper is concerned with a delayed SVEIR worm propagation model with saturated incidence. The main objective is to investigate the effect of the time delay on the model. Sufficient conditions for local stability of the positive equilibrium and existence of a Hopf bifurcation are obtained by choosing the time delay as the bifurcation parameter. Particularly, explicit formulas determining direction of the Hopf bifurcation and stability of the bifurcating periodic solutions are derived by using the normal form theory and the center manifold theorem. Numerical simulations for a set of parameter values are carried out to illustrate the analytical results
    corecore